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ON THE CONTROLLED ROTATION OF A SYSTEM OF TWO RIGID BODIES 
WITH ELASTIC ELEREKTS* 

V.E. BERBYUK 

The problem of controlling the plane rotational motions of two rigidbodies 
connected by an elastic rod is studied. One end of the rod is attached to 
the support by a hinge with a spring, the latter modelling the elastic 
compliance of the fastening, and the other end is rigidly joined to the load, 
The Hamilton principle is used to obtain the integrodifferential equations 
and boundary conditions describing the motion of the system support - spring - 
rod - load. The following problem is posed: it is required to rotate the 
system by a given angle by means of the controlling force moment, with 
quenching of the relative oscillations of the load elements which appear 
as a result of the deformability of the rod and of the elastic torsion of 
the spring. Similar problem arise in the study of the dynamics and control 
of the motion of devices used in transporting loads through space (robots, 
manipulators, load lifting machines, etc.). In computing their control 
modes a significant part is played not only by the deformability of the 
elements /l-3/, but also by the elastic compliance of the connecting 
joints /4/. Asymptotic methods are used to botain a solution of the 
control problem in question for two limiting cases: 1) the mass of the 
load carried is much greater than the mass of the rod and support, and 21 
the rod has high flexural rigidity. The results obtained represent a 
development and generalization of the results obtained in /5/. The 
problems of the dynamics and control of oscillating systems with distributed 
parameters were investigated using various types of formulation in a number 
of papers (/5-13/et. al.). 

1. Description of the mode1 and the equations of motion. We consider a mechan- 
ical system consisting of two rigid bodies connected 
by a rod of variable cross-section. The system can 
execute rotational motions in some plane (Fig.1). One 
end of the rod is attached to the support G,,by means 
of a hinge with a weightless spring, modelling the 
elastic compliance of the joint. The other end is 
rigidly fixed to the load G,, whose linear dimensions 
are small compared with the length of the rod. The 

01% -axis, perpendicular to the plane of the motion 
represents the axis of rotation, with respect to which 
the moment of control forces M(t) is applied. We 
introduce the OXYZ coordinate system with origin 
at the centre of the hinge (point 01, rotating in the 
inertial O,X,YIZ, space together with the spring and 
rod. i?e direct the OX axis along the tangent to the 
neutral line of the rod at the point 0, and the OS 
axis along the O,Z, axis of rotation. We assume that 
the motion of the model is described in the framework 

'g.1 
of the linear theory of thin rectilinear, inextensible 
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rods 16, 101. 
We introduce the following notation (Fig.1): x is the abscissa of the point P in the 

moving OXY (O,<sQ 2) coordinate system where .! is the rod length, p(z) is the linear density, 
E is Young's modulus, I(x) is the moment of inertia of the transverse cross-section relative 
to the axis perpendicular to the plane af flexure,J; is the moment of inertia of the body G, 
relative to the axis of rotation, a is the distance between the axis of rotation and the point 
0, n is the mass of the load G,, c is the reduced angular coefficient of rigidity of the 
spring, g, is the angle of rotation of the support body, 6 is the additional angular displace- 
ment of the rod due to the compliance of the hinge measured from the line 0,O to the OX axis 
(the angle of twist of the spring 8 =0 corresponds to its stress-free state), u(x,t) is the 
displacement vector of the point P of the elastic rod with coordinate x at the instant of time 

t, u (s, t), -v(z,t) is its projection on the axes of the OXY coordinate system. 
The inextensibility of the rod yields the following relation: 

LL+ (2, 0 = -r/$&e (2, t) (1.1) 

Here and henceforth the index x denotes the corresponding partial derivative. 
Let us derive the equations of motion of the mechanical system in question. Let P denote 

any point of the rod. The absolute velocity of the point P is 

v (2, 0 = v,+ 81 x r (1.2) 

where V, is its relative velocity, &~r is the angular velocity of the moving coordinate system 
relative to the inertial frame of reference, and ? is the radius vector of P at the instant 
t. We have the following coordinate representation (in the linear approximation in 0) for 
the vectors T,o~,Y~ in the OXYZ system: 

I I 

CL.31 

A dot and the subscript t denote, 
derivati+e. 

respectively, the total derivative and the partial time 

Using (1.21, (1.3) and eleiminating the longitudinal vibrations u&t) with help of rela- 
tion (1.1) we arrive, after some reduction, at the following expression for the kinetic energy 
with an accuracy up to and including terms of the second order of smallness: 

T <p(z) tcpyae + v+ h-- (x+4 (P’-dB- (1.4) 

D 

cpe2b (;t) uz2) dx + -$ {cp” [afl + u (I, t)]” + [q (1, t) - hcp’ - lfY]2) 

Using the same assumptions, we obtain the potential energy of the system 

We derive the equations of motion using the Hamilton principle in the form 

5 (6T-6II+6*A)dt=O 
0 

0.6) 

Here 6T, 6n are the variations in the kinetic and potential energy, S*A -M&I is the 
elementary work done by the given non-potential forces and 
and end of the control process. 

t = O,t.= ‘L denotes the beginning 

We note that the properties of the OXYZ coordinate system imply the relations 

u (0, tj = 0, u, (0, t) = 0 (1.7) 

Using 11.41, (1.51, (1.7) and integrating by parts (1.6), 
sion, 

we obtain a stationary expres- 
the latter property yielding the following equations and deficient boundary conditions: 
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Jae” + (c - mdrp’*) 0 = i p (2) (xvtt + ~cp’~u) dr - 
0 

(1.9) 

where 

The first equation of (1.8) expresses the theorem on the change in angular momentum of 
the whole system relative to the O,Z, axis, the second equation describes the torsion in 
the hinge spring acted upon by the principal moment of the D'Alembert forces of inertia of 
the load elementsofthe system, about the point 0 (in the linear approximation in 0, 6'), and 
the third equation describes small elastic displacements of the points of the rod from their 
equilibrium position. The boundary conditions (1.9) have a dynamic character and express the 
equilibrium of the transverse force and the fact that there is no bending moment at the end 
of the rod at x = 1. 

To determine the motion of the system uniquely, we must specify the initial configuration 
and velocity of the points of the neutral line of the rod for O<z,< 1, and the initialvalues 
of cp, qJ', 0, &! 

v (I, 0) = f (4, vt (2, 0) = g (4 (f (0) = f, (0) = 0; (1.10) 

up (0) = cp”, up’ (0) = cp”‘; e (0) = 80, 8’ (0) = 80’ (1.11) 

Thus the integrodifferential equations in partial derivatives (1.8) with the boundary 
condition (l-7), (1.9) and initial condition (l.lO), (1.11) define uniquely, for the given 
control M(t), the motion of the mechanical system in question. 

When the hinge 0 has neither the support G,, nor a spring, i.e. when J, = a = 0, e(t)=O, 
(1.7)-(1.9) yield equations and boundary conditions for the controlled rotation of a rod /5/. 

We can now formulate the following problem. We require to determine the control M (t) E 

M, which transfers the system, by virtue of (1.8) and boundary conditions (1.7), (1.9), from 
its initial state (l-lo), (1.11) to the final state, with the relative displacements quenc‘ned 

cp (7) = ‘p*, up’ (T) = e (7) = e- (T) = 0 :1.12j 

v (5, r) = 0: (5, 7) = 0, z E IO, II (1.13) 

Here M is a given fixed set of admissible values of the control. 
The relations (l-7)-(1.9) imply that the system will remain at rest (1.12), (1.13) for 

t> z, provided that we then put M z 0. 

2. The problem of control in the quasistatic approximation. TO study the 
problem in question, it is convenient to change to dimensionless variables and parameters. 
We introduce them in the following manner: 

t' = vt, If = xll, v’ = 41, I’ = III, (2.1) 

P' = P/PO, c' = cl(mFv*), a’ = all. 

Here v is the characteristic constant with dimensions of frequency, whose choice is 
governed by the specific features of the problem, and I,,&, are the characteristic parameters 

of the problem, with the corresponding dimensionsofinertia and linear density respectively. 
We shall assume that the mass of the body G1 and the rod is vanishingly small compared 

with the mass of the load G,. Then, putting M'= Ml(mlhvs) and choosing as v the quantity 

v = (El,l(d))‘b characterising the frequency of the quasistatic oscillations of the system, 
we obtain from (1.7)-(1.9) the following relations (the primes are omitted from the new 
variables) : 

(1 + a) cp" + 8" - v*t (1, t) = M (t) (2.2) 

8” + (C - dv*q e = vtt (1, t) - (1 + U) ‘p*+ +- ~cp’% (I, t) (2.3) 

11 (4 v,,L = (1 + a) 'p'?Uxx (?.'I) 
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v (0, t) ==vX(O,t)=V~S(l,t)=o (2.5) 

II (2) v,,l, L-1 = {Qt -_(I + 4 cp" - 8" + If* [(I + a) v,- 

v - 4) lx-l 

In the present formulation the initial distribution of the points of the weightless rod 
(O<s<l) and their velocities are not essential for the further motion of the load G,, and 
we therefore have 

ZJ 0, 0) = f (i), Ut (1, 0) = g (1) (2.6) 

v (1, z) = U* (1, 7) = 0 (2.7) 

The formulation of the initial and final conditions for cp,cp',8,8' remains unchanged and 
is given by relations (l.ll), (1.12). 

Let us restrict ourselves to the case of Z(z) = I, = const , which is important in pract- 

ice. Then taking (2.2) into account, we Can write the solution for the boundary value problem 

(2.4), (2.5) in the form 

0 (5, t) = iM (t) + a9 (t)@ @)I @ (3, t> (2.0) 

Let us integrate (2.2) term by term, taking into account the initial conditions (1.11)) 

(2.6) 

(2.9) 

Equation (2.3) taking (2.2) into account, can be written in the form 

(c - a2$") 0 = Qcp”V (I, t) - M (t) (2.10) 

Relations (2.8)-(2.10) yield the solution of the problem of control in the quasistatic 
approximation, namely, the sufficient and necessary condition for the motion of the system 
determined by the equations (2.2)-(2.41, and the boundary conditions (2.5), and the initial 
conditions (1.W I (2.6) which satisfy the final conditions (1.121, f2.71, is, that the twice 
differentiable function M(t) be chosen from the relations 

f 

~~~(t)dt=g(l)-OP-(i+a)~“, M(z)=0 
0 

(2.11) 

Note that the initial conditions for the twist of the spring and for tie state of the 
points of elastic rod are chosen, taking the specific constraints into account. For example, 

when cy" 7 0" = 0 the condition of quasistatic equilibrium of the spring and rod with the load 
G of the form 3Zaf(f)+ ~9' = 0,must hold. *en s =i 3' il8"' = 0 

przb;em of controlling the rotation of the elastic rod with a laod 
the solution of the 

approximation /5/, from (2.11). 
hollows, in the quasistatic 

Let us consider the important practical special case of zero initial conditions BD=9"'= 
f(t)= g(i)= cp"'=O. Here, as (2.11) implies, the following relations must hold: 

M (t) df = 0, M (0) = M' (0) = M (r) =a M’ (rf = 0 (2.12) 

i 
(7 - 1) .\I (1)dl= (0 + 1) ((P.- cp") (2.13) 

0 

Letthehinge 0 contain neither the support 61, nor the spring, and let the rod be 
rigidly fixed at the point 4. Then, to rotate the loaded rod by an angle q., with quenching 
of the relative deflections of tie load,the controlling moment M,(f)must be chosen from 
conditions analogous to (2.12) and the relation /5/ 
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t) iI11 (t) dt = p1 - q” 

0 

(2.14) 

Taking (2.14) into account we obtain, from (2.13), 

(5-t) [%I (t) -MI (t)Jdt = a (cp. - @) (2.15) 
0 

Since a&- cp")> 0, from (2.15) it follows that a time interval Itl,tl],O(t,<r,<s exists 
in which M (t) > Ml (t). 

Thus to bring the mechanical system in question into the prescribed angular position, 
taking the elastic compliance of the connecting hinge into account , requires an increase in 
the controlling moment only in the case, when the hinge lies outside the axis of rotation 
(0 > 0). If the hinge lies on the axis of rotation (a=O), then the same control force moment 
chosen from the relations (2.121, (2.14) will bring the loaded rod into the prescribed angular 
position in the case of a rigid hinge /5/, as well as in the case when the hinge exhibits a 
concentrated elastic compliance. 

3. Investigation of the problem of control in the case of large flexural 
rigidity of the rod. We choose here v = (M,,/J)'h as v, and introduce a new control 
M' = M/M,,where M, = supl /M(t) I. Then equations (1.8) in the new variables (2.1) will take 

the form 
1 

fP-++B..-GJtt(,w 1 --x p(z)(x+a)utt(x,t)dx=M(t) (3.1) 

The boundary and initial conditions are 

V (0. t) = u, (0, t) = v,.(1, t) 5 0 

[~(~)~,,l~l~-~=~X~~v~t-(l+a)cp"-e8"+cp'*[(~+~)~,--~-~l~I~1 

up (0) = cp”, up* (0) = cpo’, e (0) = peo, 8’ (0) = cIeo’ 

u (s, 0) = A(s), st (5, 0) = pg (2) 

(3.2) 

(3.3) 

The conditions at the completion of the control process are given by (1.121, (1.13) with 
1 1. = 

We will construct the solution of the control problem , using the methods of perturbation 
theory, in powers of the small parameter p. We assume that 

P = qo + PI,+ CL" - * - (Q = (cp (& e (Q. lJ (x7 0, M (0)) (3.4) 

When the flexural rigidity of the rod is infinitely large (p = 0), the points of the rod 

undergo no relative displacements, i.e. uo(z,t)30. The motion of the system as a whole, 

taking into account the only possible twist of the spring, is described by virtue of (3.1)- 

(3.3) by the following equations, and initial and final conditions (to terms of the order of 

'p'%): 

fpo"f +e,*. = MO(t), + e; + cxleo = - + cpo** (3.5) 

qo(o) =cp", cpo*(0)-~~*, eo(Ob=eem -0 (3.6) 

cpo(r)=cp,, cpo'(9=e0(r)=60'(r)=0 (3.7) 

It can be shown that if the motion of the system is determined by (3.5) and initial condi- 
tions (3.6), then the purpope of the motion will be achieved if and only if the control bfo(t) 
is chosen from the relation 

s Mo(t)sink(z-_)dt=O, iMO(L)eosk(r--t)dt=O (3.8) 
0 Cl 
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from (3-l)-(3.4) we obtain the following relations (to terms 'Pr'a61,cp~'2v~) 

the functions @&,8,,V,,Mlr,: 

V(4 %& = XP Wo” -I- (2 + 4 %“I 
u~(o,t)=v,(o,t)=v~,(l,~)~o 
rz (4 bic~lx k-1 = - Xl PO” + ( 1 + 4 plo”l 
f&(O)=tpP; (0) =O, @i{O)=iY, 6;(0)=6" 

Vl (2, 0) = f (a vu (5, 0) = g(z) 

'pl 6) = 9; (2) = 81 (r) = el* (2) = 0 
VI (5, t) =P1t(z,t)~O, tEEO.11 

The solution of the boundary value problem (3.11)-(3.13) has the form 

ul (2, 1) = A fz) 0; (0 -I- B (4 ipd’ 0) 

for determining 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

xs=tw p(z)dx. s x*=(Lx1 
0 

Taking (3.51, into account we can write the solution (3.18) in the form 

v,(s,t)= MoOAI(~)+@ [+ B(z)--A(a$1Bo(t) (3.19) 

AI (x) = es.4 (cz) + (1- +) 3 (x). cl = JtJ,‘(Jng - JJaf 

The control M,(t) is such, that 0,(t) satisfies the relation (3.7). Therefore, if we 
demand, in addition, that conditions 

M, (7) = M; (t) = 0 (3.20) 

hold, then from (3.19) it follows that the relative displacements of the points of the rod 
will be quenched, i.e.conditions (3.17) will be satisfied. 

Analysing the solution (3.19) I taking (3.6) into account, we find that the initial conai- 
tions (3.151 can be satisfied only when the following relations hold: 

Substituting rx(z,t) 
relations for determining 

here @,,@, are known 
(3.10), (3.19). Taking the 

M, 69 = f (4 A,” (4, M,’ (0) = g (4 A;’ (4 (3.21) 

obtained into the equations (3.91, (3.10), we obtain the following 
the remaining unknowns 'pI,O,, M, : 

VI” + + 81” = hh (f) -f- @x [MO" (t), 60” (t)] (3.22) 

+ 81” + caret = ah [hi; (t), e; (t)] - + vl** 

functions linear in M,",6[ determinable by virtue of (3.9), 
initial conditions (3.14) into account we obtain, from (j.22), 
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t 
01 (t) = 0” co.5 kt + ysinkt++- 

s 
[clM,(s) + @(s)]sink(t- s) ds 

0 
!3.23) 

If we now require that conditions (3.16) hold, we obtain, from (3.23) 
tion, the following expressions for the unknown control M, (tj : 

after some reduc- 

(3.24)' 

I 

Integrating the first equation of (3.22) with respect to time and requiring that condi- 
tions (3.14), (3.16) hold, we arrive at the following additional relations: 

7 

s [MI (t) + CD1 (t)]dt = - + 8”’ 
0 
T 

s 
[Ml(t) + Dl(t)](~ - t)dt = - +(W + te”‘) 

0 

(3.25) 

Thus we have proved the following assertion. Let the motion of a mechanical system be 
described by (3.1) and the boundary (3.2) and initial (3.3) conditions. Then the necessary 
and sufficientconditionfor themotionto satisfytheconditions (1.12), (1.13) (for 1= 1) uptoand 
including terms of the order of p , at the instant when the control process is completed is, 
that the control M(t) = M,(t)+ pM,(t) where M,(t),M1(t) be chosen from the relations (3.81, 
(3.201, (3.211, (3.24), (3.25). 

If the hinge has neither a support nor a spring, i.e. J, = a = 8(t)= 0, then the solution 
obtained yields a solution for the problem of the control of a loaded elastic rod in the case 
of large flexural rigidity /5/. 
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